metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-[(Propan-2-vloxy)carbonyl]guinolin-1ium tetrachlorido(quinoline-2-carboxylato- $\kappa^2 N$,O)stannate(IV)

Ezzatollah Najafi,^a Mostafa M. Amini^a and Seik Weng Ng^{b,c}*

^aDepartment of Chemistry, General Campus, Shahid Beheshti University, Tehran 1983963113, Iran, ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and ^cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia Correspondence e-mail: seikweng@um.edu.my

Received 30 April 2012; accepted 1 May 2012

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; R factor = 0.027; wR factor = 0.062; data-to-parameter ratio = 18.2.

In the title salt, $(C_{13}H_{14}NO_2)[Sn(C_{10}H_6NO_2)Cl_4]$, the Sn^{IV} cation is N,O-chelated by the quinolincarboxylate unit and further coordinated by four Cl- anions in a distorted octahedral geometry. In the crystal, the 2-[(propan-2-yloxy)carbonyl]quinolin-1-ium cation is linked to the Sn complex anion by an $N-H \cdots O$ hydrogen bond.

Related literature

For related stannates, see: Vafaee et al. (2010); Najafi et al. (2012).

Experimental

Crystal data (C13H14NO2)[Sn(C10H6NO2)Cl4]

 $M_{\rm w} = 648.90$

Monoclinic, $P2_1/c$
a = 7.1932 (2) Å
b = 17.8616 (4) Å
c = 19.1963 (5) Å
$\beta = 95.156 \ (3)^{\circ}$
$V = 2456.40 (11) \text{ Å}^3$

Data collection ~

Agilent SuperNova Dual	16873 measured reflections
diffractometer with an Atlas	5665 independent reflections
detector	4896 reflections with $I > 2\sigma(I)$
Absorption correction: multi-scan	$R_{\rm int} = 0.032$
(CrysAlis PRO; Agilent, 2012)	
$T_{\min} = 0.584, \ T_{\max} = 0.752$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.027$	H atoms treated by a mixture of
$wR(F^2) = 0.062$	independent and constrained
S = 1.00	refinement
5665 reflections	$\Delta \rho_{\rm max} = 0.45 \ {\rm e} \ {\rm \AA}^{-3}$
311 parameters	$\Delta \rho_{\rm min} = -0.59 \text{ e } \text{\AA}^{-3}$
1 restraint	

Z = 4

Mo $K\alpha$ radiation

 $0.40 \times 0.40 \times 0.20 \text{ mm}$

 $\mu = 1.51 \text{ mm}^{-1}$

T = 100 K

Table 1

Hydrogen-bond geometry (Å, °).

$\overline{D-\mathrm{H}\cdots A}$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N2-H2···O2	0.88 (1)	1.95 (1)	2.819 (3)	169 (3)

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

We thank Shahid Beheshti University and the Ministry of Higher Education of Malaysia (grant No. UM.C/HIR/MOHE/ SC/12) for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5530).

References

Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

- Najafi, E., Amini, M. M. & Ng, S. W. (2012). Acta Cryst. E68, m738.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Vafaee, M., Amini, M. M. & Ng, S. W. (2010). Acta Cryst. E66, m390.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supplementary materials

Acta Cryst. (2012). E68, m732 [doi:10.1107/S1600536812019496]

2-[(Propan-2-yloxy)carbonyl]quinolin-1-ium tetrachlorido(quinoline-2carboxylato- $\kappa^2 N, O$)stannate(IV)

Ezzatollah Najafi, Mostafa M. Amini and Seik Weng Ng

Comment

Stannic chloride and quinoline-2-carboxylic acid reacts in methanol medium to yield 2-(ethoxycarbonyl)quinolinium tetrachlorido(quinoline-2-carboxylatostannate(IV), which crystallizes a as a methanol solvate (Vafaee *et al.*, 2010). The corresponding 2-(isoproproxycarbonyl)quinolinium salt (Scheme I) is obtained when isopropyl alcohol is used in placed of methanol; however, the compound does not has any solvent of crystallization. The Sn^{IV} atom is chelated by the quinolincarboxylate unit and it exists in an octahedral coordination geometry (Fig. 1). The cation is linked to the anion by an N–H…O hydrogen bond (Table 1).

Experimental

Stannic chloride pentahydrate (0.35 g, 1 mmol) and quinoline-2-carboxylic acid (0.17 g, 2 mmol) were loaded into a convection tube; the tube was filled with isopropyl alcohol and kept at 333 K. Light yellow crystals were collected from the side arm after several days.

Refinement

Carbon-bound H-atoms were placed in calculated positions [C–H 0.95 to 0.98 Å, U_{iso} (H) 1.2 to 1.5 U_{eq} (C)] and were included in the refinement in the riding model approximation.

The ammonium H-atom was located in a difference Fourier map, and was refined with a distance restraint of N–H 0.88 ± 0.01 Å; its temperature factor was refined.

Computing details

Data collection: *CrysAlis PRO* (Agilent, 2012); cell refinement: *CrysAlis PRO* (Agilent, 2012); data reduction: *CrysAlis PRO* (Agilent, 2012); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2010).

Figure 1

Thermal ellipsoid plot (Barbour, 2001) of $(C_{13}H_{14}NO_2)$ [SnCl₄($C_{10}H_6NO_2$)] at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

2-[(Propan-2-yloxy)carbonyl]quinolin-1-ium tetrachlorido(quinoline-2-carboxylato-*k*²*N*,*O*)stannate(IV)

$(C_{13}H_{14}NO_2)[Sn(C_{10}H_6NO_2)Cl_4]$ $M_r = 648.90$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 7.1932 (2) Å b = 17.8616 (4) Å c = 19.1963 (5) Å $\beta = 95.156$ (3)° V = 2456.40 (11) Å ³ Z = 4	F(000) = 1288 $D_x = 1.755 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 8443 reflections $\theta = 2.3-27.5^{\circ}$ $\mu = 1.51 \text{ mm}^{-1}$ T = 100 K Prism, light yellow $0.40 \times 0.40 \times 0.20 \text{ mm}$
Data collection	
Agilent SuperNova Dual diffractometer with an Atlas detector Radiation source: SuperNova (Mo) X-ray Source Mirror monochromator Detector resolution: 10.4041 pixels mm ⁻¹ ω scan Absorption correction: multi-scan (<i>CrysAlis PRO</i> ; Agilent, 2012)	$T_{\min} = 0.584, T_{\max} = 0.752$ 16873 measured reflections 5665 independent reflections 4896 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.032$ $\theta_{\max} = 27.6^{\circ}, \theta_{\min} = 2.3^{\circ}$ $h = -9 \rightarrow 8$ $k = -23 \rightarrow 22$ $l = -24 \rightarrow 14$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.027$	Hydrogen site location: inferred from
$wR(F^2) = 0.062$	neighbouring sites
S = 1.00	H atoms treated by a mixture of independent
5665 reflections	and constrained refinement
311 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0278P)^2 + 0.7987P]$
1 restraint	where $P = (F_0^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.002$
direct methods	$\Delta \rho_{\rm max} = 0.45 \text{ e } \text{\AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.59 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Sn1	0.53403 (2)	0.617340 (8)	0.681802 (8)	0.01204 (5)	
Cl1	0.74011 (8)	0.54275 (3)	0.75709 (3)	0.01880 (13)	
Cl2	0.55407 (8)	0.54164 (3)	0.58147 (3)	0.01864 (13)	
C13	0.26300 (8)	0.55748 (3)	0.71743 (3)	0.01923 (13)	
Cl4	0.78982 (8)	0.69944 (3)	0.66038 (3)	0.01852 (13)	
01	0.3671 (2)	0.68976 (8)	0.61805 (9)	0.0160 (3)	
O2	0.2388 (2)	0.80248 (9)	0.60590 (9)	0.0214 (4)	
03	0.1647 (2)	0.96046 (9)	0.38812 (9)	0.0212 (4)	
O4	0.1828 (3)	0.92896 (9)	0.50283 (10)	0.0288 (4)	
N1	0.4572 (2)	0.71449 (10)	0.75561 (10)	0.0123 (4)	
N2	0.0861 (3)	0.78646 (10)	0.46623 (11)	0.0137 (4)	
H2	0.128 (4)	0.7973 (15)	0.5093 (7)	0.033 (8)*	
C1	0.3248 (3)	0.75441 (12)	0.64113 (13)	0.0152 (5)	
C2	0.3810(3)	0.77079 (12)	0.71758 (12)	0.0137 (5)	
C3	0.3490 (3)	0.84213 (12)	0.74524 (13)	0.0175 (5)	
H3	0.2964	0.8810	0.7160	0.021*	
C4	0.3946 (3)	0.85458 (13)	0.81454 (13)	0.0169 (5)	
H4	0.3792	0.9030	0.8336	0.020*	
C5	0.4647 (3)	0.79574 (12)	0.85798 (13)	0.0139 (5)	
C6	0.5036 (3)	0.80425 (13)	0.93158 (13)	0.0179 (5)	
H6	0.4848	0.8514	0.9528	0.021*	
C7	0.5676 (3)	0.74510 (14)	0.97183 (13)	0.0195 (5)	
H7	0.5947	0.7513	1.0208	0.023*	
C8	0.5937 (3)	0.67457 (14)	0.94067 (13)	0.0178 (5)	
H8	0.6365	0.6336	0.9693	0.021*	
C9	0.5583 (3)	0.66412 (13)	0.86986 (13)	0.0153 (5)	
H9	0.5762	0.6163	0.8499	0.018*	
C10	0.4955 (3)	0.72447 (12)	0.82692 (12)	0.0121 (5)	
C11	0.1536 (3)	0.91484 (13)	0.44172 (13)	0.0153 (5)	

C12	0.0940 (3)	0.83797 (12)	0.41617 (13)	0.0137 (5)
C13	0.0433 (3)	0.82038 (13)	0.34648 (13)	0.0151 (5)
H13	0.0506	0.8570	0.3110	0.018*
C14	-0.0177 (3)	0.74902 (13)	0.32982 (13)	0.0168 (5)
H14	-0.0518	0.7363	0.2823	0.020*
C15	-0.0301 (3)	0.69484 (12)	0.38213 (13)	0.0148 (5)
C16	-0.0970 (3)	0.62128 (12)	0.36872 (14)	0.0184 (5)
H16	-0.1302	0.6056	0.3220	0.022*
C17	-0.1139 (3)	0.57292 (13)	0.42255 (14)	0.0196 (5)
H17	-0.1621	0.5241	0.4132	0.023*
C18	-0.0606 (3)	0.59455 (13)	0.49189 (14)	0.0178 (5)
H18	-0.0744	0.5600	0.5287	0.021*
C19	0.0103 (3)	0.66398 (12)	0.50750 (13)	0.0160 (5)
H19	0.0496	0.6774	0.5544	0.019*
C20	0.0238 (3)	0.71517 (12)	0.45259 (12)	0.0131 (5)
C21	0.2217 (3)	1.03864 (12)	0.40355 (14)	0.0209 (5)
H21A	0.1958	1.0519	0.4524	0.025*
C22	0.4265 (4)	1.04469 (15)	0.39607 (17)	0.0311 (7)
H22A	0.4679	1.0962	0.4061	0.047*
H22B	0.4509	1.0315	0.3482	0.047*
H22C	0.4948	1.0104	0.4290	0.047*
C23	0.1016 (4)	1.08525 (15)	0.35205 (17)	0.0370 (7)
H23A	0.1312	1.1383	0.3597	0.056*
H23B	-0.0302	1.0766	0.3586	0.056*
H23C	0.1257	1.0712	0.3043	0.056*

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	<i>U</i> ³³	U^{12}	U^{13}	U^{23}
Sn1	0.01605 (9)	0.01020 (8)	0.00981 (9)	-0.00155 (6)	0.00086 (6)	-0.00091 (6)
Cl1	0.0217 (3)	0.0154 (3)	0.0188 (3)	0.0028 (2)	-0.0009(2)	0.0007 (2)
Cl2	0.0258 (3)	0.0169 (3)	0.0137 (3)	-0.0036 (2)	0.0044 (2)	-0.0055 (2)
C13	0.0201 (3)	0.0194 (3)	0.0188 (3)	-0.0065 (2)	0.0051 (2)	-0.0038 (2)
Cl4	0.0215 (3)	0.0189 (3)	0.0155 (3)	-0.0071 (2)	0.0042 (2)	-0.0020 (2)
01	0.0231 (8)	0.0126 (8)	0.0116 (9)	0.0012 (7)	-0.0017 (7)	-0.0017 (6)
O2	0.0326 (9)	0.0148 (8)	0.0154 (10)	0.0037 (7)	-0.0051 (8)	0.0016 (7)
O3	0.0337 (10)	0.0132 (8)	0.0170 (10)	-0.0065 (7)	0.0033 (8)	0.0011 (7)
O4	0.0488 (12)	0.0205 (9)	0.0158 (10)	-0.0068 (8)	-0.0051 (9)	0.0022 (7)
N1	0.0138 (9)	0.0121 (9)	0.0113 (10)	-0.0019 (8)	0.0025 (8)	-0.0006 (7)
N2	0.0129 (9)	0.0162 (10)	0.0115 (11)	0.0008 (8)	-0.0014 (8)	0.0007 (8)
C1	0.0179 (11)	0.0149 (11)	0.0129 (12)	-0.0040 (9)	0.0026 (9)	0.0009 (9)
C2	0.0163 (11)	0.0125 (11)	0.0123 (12)	-0.0040 (9)	0.0009 (9)	-0.0003 (9)
C3	0.0224 (12)	0.0117 (11)	0.0180 (14)	0.0006 (10)	-0.0005 (10)	0.0004 (9)
C4	0.0174 (11)	0.0123 (11)	0.0208 (14)	-0.0019 (10)	0.0004 (10)	-0.0036 (10)
C5	0.0102 (10)	0.0169 (11)	0.0148 (13)	-0.0028 (9)	0.0015 (9)	-0.0037 (9)
C6	0.0166 (11)	0.0219 (12)	0.0153 (13)	-0.0044 (10)	0.0023 (10)	-0.0080 (10)
C7	0.0163 (11)	0.0322 (14)	0.0102 (13)	-0.0028 (10)	0.0012 (9)	-0.0015 (10)
C8	0.0167 (11)	0.0258 (13)	0.0110 (13)	0.0016 (10)	0.0018 (9)	0.0043 (10)
C9	0.0151 (11)	0.0157 (11)	0.0150 (13)	-0.0001 (9)	0.0020 (9)	-0.0001 (9)
C10	0.0114 (10)	0.0132 (10)	0.0117 (12)	-0.0021 (9)	0.0008 (9)	0.0002 (9)

0.0142 (11)	0.0161 (11)	0.0153 (13)	0.0034 (9)	0.0002 (9)	0.0008 (9)
0.0101 (10)	0.0144 (11)	0.0165 (13)	0.0011 (9)	0.0000 (9)	0.0014 (9)
0.0135 (11)	0.0175 (11)	0.0145 (13)	0.0005 (9)	0.0024 (9)	0.0036 (9)
0.0160 (11)	0.0210 (12)	0.0131 (13)	0.0017 (10)	0.0000 (10)	-0.0002 (10)
0.0089 (10)	0.0175 (11)	0.0179 (13)	0.0033 (9)	0.0005 (9)	0.0001 (9)
0.0154 (11)	0.0185 (12)	0.0206 (14)	0.0001 (9)	-0.0025 (10)	-0.0035 (10)
0.0166 (11)	0.0142 (11)	0.0275 (15)	-0.0013 (10)	-0.0007 (10)	-0.0017 (10)
0.0156 (11)	0.0165 (11)	0.0213 (14)	0.0006 (9)	0.0021 (10)	0.0039 (10)
0.0142 (11)	0.0186 (12)	0.0148 (13)	0.0003 (9)	-0.0008 (9)	0.0023 (9)
0.0092 (10)	0.0152 (11)	0.0148 (13)	0.0003 (9)	0.0011 (9)	-0.0009 (9)
0.0289 (13)	0.0123 (11)	0.0221 (15)	-0.0049 (10)	0.0050 (11)	-0.0027 (10)
0.0281 (14)	0.0243 (14)	0.0417 (19)	-0.0089 (12)	0.0078 (13)	-0.0093 (13)
0.0507 (18)	0.0193 (13)	0.039 (2)	0.0085 (13)	-0.0061 (15)	-0.0010 (12)
	0.0142 (11) 0.0101 (10) 0.0135 (11) 0.0160 (11) 0.0089 (10) 0.0154 (11) 0.0166 (11) 0.0156 (11) 0.0142 (11) 0.0092 (10) 0.0289 (13) 0.0281 (14) 0.0507 (18)	$\begin{array}{cccccc} 0.0142 (11) & 0.0161 (11) \\ 0.0101 (10) & 0.0144 (11) \\ 0.0135 (11) & 0.0175 (11) \\ 0.0160 (11) & 0.0210 (12) \\ 0.0089 (10) & 0.0175 (11) \\ 0.0154 (11) & 0.0185 (12) \\ 0.0166 (11) & 0.0142 (11) \\ 0.0156 (11) & 0.0165 (11) \\ 0.0142 (11) & 0.0186 (12) \\ 0.0092 (10) & 0.0152 (11) \\ 0.0289 (13) & 0.0123 (11) \\ 0.0281 (14) & 0.0243 (14) \\ 0.0507 (18) & 0.0193 (13) \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Geometric parameters (Å, °)

Sn1—O1	2.0851 (15)	С8—Н8	0.9500
Sn1—N1	2.3377 (19)	C9—C10	1.407 (3)
Sn1—Cl2	2.3683 (6)	С9—Н9	0.9500
Sn1—Cl3	2.3773 (6)	C11—C12	1.507 (3)
Sn1—Cl1	2.3824 (6)	C12—C13	1.391 (3)
Sn1—Cl4	2.4168 (6)	C13—C14	1.376 (3)
O1—C1	1.283 (3)	С13—Н13	0.9500
O2—C1	1.225 (3)	C14—C15	1.403 (3)
O3—C11	1.321 (3)	C14—H14	0.9500
O3—C21	1.478 (3)	C15—C20	1.420 (3)
O4—C11	1.200 (3)	C15—C16	1.415 (3)
N1—C2	1.332 (3)	C16—C17	1.361 (4)
N1—C10	1.383 (3)	C16—H16	0.9500
N2—C12	1.335 (3)	C17—C18	1.406 (3)
N2—C20	1.367 (3)	C17—H17	0.9500
N2—H2	0.876 (10)	C18—C19	1.364 (3)
C1—C2	1.515 (3)	C18—H18	0.9500
C2—C3	1.407 (3)	C19—C20	1.405 (3)
C3—C4	1.360 (3)	С19—Н19	0.9500
С3—Н3	0.9500	C21—C22	1.497 (3)
C4—C5	1.407 (3)	C21—C23	1.504 (4)
C4—H4	0.9500	C21—H21A	1.0000
C5—C6	1.423 (3)	C22—H22A	0.9800
C5—C10	1.431 (3)	C22—H22B	0.9800
C6—C7	1.364 (3)	C22—H22C	0.9800
С6—Н6	0.9500	C23—H23A	0.9800
C7—C8	1.414 (3)	С23—Н23В	0.9800
С7—Н7	0.9500	С23—Н23С	0.9800
C8—C9	1.373 (3)		
O1—Sn1—N1	74.94 (6)	N1—C10—C5	120.2 (2)
O1—Sn1—Cl2	87.18 (5)	C9—C10—C5	119.4 (2)
N1—Sn1—Cl2	162.12 (5)	O4—C11—O3	127.9 (2)
O1—Sn1—Cl3	90.24 (5)	O4—C11—C12	122.0 (2)

N1—Sn1—Cl3	85.12 (5)	O3—C11—C12	110.1 (2)
Cl2—Sn1—Cl3	95.08 (2)	N2—C12—C13	120.8 (2)
01— $Sn1$ — $C11$	175.51 (4)	N2—C12—C11	115.0(2)
N1— $Sn1$ — $C11$	102.45 (5)	C_{13} C_{12} C_{11}	124.1(2)
Cl2— $Sn1$ — $Cl1$	95 39 (2)	C14-C13-C12	1189(2)
Cl3— $Sn1$ — $Cl1$	93 19 (2)	C14-C13-H13	120.5
$\Omega_1 = Sn_1 = C_14$	86.02 (5)	C12—C13—H13	120.5
N1— $Sn1$ — $C14$	82.98 (5)	C_{13} C_{14} C_{15}	120.3 120.8(2)
C12— $Sn1$ — $C14$	96.04 (2)	C_{13} C_{14} H_{14}	119.6
C_{12} Shi C_{14}	168.08.(2)	C_{15} C_{14} H_{14}	119.6
C_{11} S_{n1} C_{14}	90.05 (2)	C_{14} C_{15} C_{20}	119.0 118.4(2)
C1 = O1 = Sn1	119.85 (15)	$C_{14} = C_{15} = C_{20}$	123.6(2)
$C_1 = C_1 = C_1$	117.03(15) 117.52(10)	$C_{14} = C_{15} = C_{16}$	123.0(2)
$C_{11} = 05 = 021$	117.32(19) 118 74 (10)	$C_{20} = C_{10} = C_{10}$	110.0(2)
$C_2 = N_1 = C_{10}$	110.74(19) 100.66(15)	C17 = C16 = U16	120.2(2)
$C_2 = N_1 = S_{11}$	109.00(13) 121.10(14)	$C_{17} = C_{10} = 1110$	119.9
C10 N2 $C20$	131.19(14) 132.6(2)	C16 - C17 - C18	119.9
C12 = N2 = U2	122.0(2)	C16 - C17 - U17	120.0 (2)
C12 - N2 - H2	119.3 (19)	$C_{10} - C_{17} - H_{17}$	119.7
C_{20} N_{2} H_{2}	117.9 (19)	C18 - C17 - H17	119.7
02C101	124.3(2)	C19 - C18 - C17	121.5 (2)
02C1C2	118.5 (2)	C17_C18_H18	119.2
01 - 01 - 02	117.20 (19)	C17	119.2
NI-C2-C3	123.4 (2)	C18 - C19 - C20	118.5 (2)
NI = C2 = CI	116.50 (19)	C18—C19—H19	120.8
$C_3 = C_2 = C_1$	120.1 (2)	C20—C19—H19	120.8
C4—C3—C2	118.9 (2)	N2-C20-C19	120.4 (2)
С4—С3—Н3	120.5	N2—C20—C15	118.5 (2)
С2—С3—Н3	120.5	C19—C20—C15	121.1 (2)
C3—C4—C5	120.0 (2)	03-C21-C22	107.85 (19)
C3—C4—H4	120.0	03-C21-C23	105.0 (2)
C5—C4—H4	120.0	C22—C21—C23	114.1 (2)
C4—C5—C6	122.4 (2)	O3—C21—H21A	109.9
C4—C5—C10	118.6 (2)	C22—C21—H21A	109.9
C6—C5—C10	119.0 (2)	C23—C21—H21A	109.9
C7—C6—C5	120.4 (2)	C21—C22—H22A	109.5
С7—С6—Н6	119.8	C21—C22—H22B	109.5
С5—С6—Н6	119.8	H22A—C22—H22B	109.5
C6—C7—C8	120.1 (2)	C21—C22—H22C	109.5
С6—С7—Н7	120.0	H22A—C22—H22C	109.5
С8—С7—Н7	120.0	H22B—C22—H22C	109.5
C9—C8—C7	121.3 (2)	C21—C23—H23A	109.5
С9—С8—Н8	119.3	C21—C23—H23B	109.5
С7—С8—Н8	119.3	H23A—C23—H23B	109.5
C8—C9—C10	119.8 (2)	C21—C23—H23C	109.5
С8—С9—Н9	120.1	H23A—C23—H23C	109.5
С10—С9—Н9	120.1	H23B—C23—H23C	109.5
N1—C10—C9	120.4 (2)		
N1—Sn1—O1—C1	10.22 (16)	C2—N1—C10—C5	-4.1 (3)

Cl2—Sn1—O1—C1	-169.82 (16)	Sn1—N1—C10—C5	167.66 (15)
Cl3—Sn1—O1—C1	95.10 (16)	C8—C9—C10—N1	-179.2 (2)
Cl4—Sn1—O1—C1	-73.57 (16)	C8—C9—C10—C5	-1.6 (3)
O1—Sn1—N1—C2	-11.88 (14)	C4—C5—C10—N1	0.2 (3)
Cl2—Sn1—N1—C2	-12.0 (3)	C6—C5—C10—N1	179.38 (19)
Cl3—Sn1—N1—C2	-103.44 (14)	C4—C5—C10—C9	-177.4 (2)
Cl1—Sn1—N1—C2	164.36 (13)	C6—C5—C10—C9	1.7 (3)
Cl4—Sn1—N1—C2	75.87 (14)	C21-O3-C11-O4	0.7 (4)
O1—Sn1—N1—C10	175.81 (19)	C21-O3-C11-C12	-179.99 (18)
Cl2—Sn1—N1—C10	175.67 (13)	C20-N2-C12-C13	-1.9 (3)
Cl3—Sn1—N1—C10	84.25 (18)	C20-N2-C12-C11	175.94 (19)
Cl1—Sn1—N1—C10	-7.94 (19)	O4—C11—C12—N2	-3.4 (3)
Cl4—Sn1—N1—C10	-96.43 (18)	O3—C11—C12—N2	177.26 (19)
Sn1—O1—C1—O2	174.66 (17)	O4—C11—C12—C13	174.3 (2)
Sn1—O1—C1—C2	-7.1 (3)	O3—C11—C12—C13	-5.0 (3)
C10—N1—C2—C3	4.6 (3)	N2-C12-C13-C14	0.8 (3)
Sn1—N1—C2—C3	-168.75 (18)	C11—C12—C13—C14	-176.8 (2)
C10—N1—C2—C1	-174.27 (19)	C12—C13—C14—C15	0.5 (3)
Sn1—N1—C2—C1	12.3 (2)	C13—C14—C15—C20	-0.7 (3)
O2—C1—C2—N1	173.4 (2)	C13—C14—C15—C16	178.0 (2)
01—C1—C2—N1	-4.9 (3)	C14—C15—C16—C17	-176.7 (2)
O2—C1—C2—C3	-5.5 (3)	C20-C15-C16-C17	2.1 (3)
O1—C1—C2—C3	176.1 (2)	C15—C16—C17—C18	-1.7 (4)
N1-C2-C3-C4	-1.2 (4)	C16-C17-C18-C19	-0.4 (4)
C1—C2—C3—C4	177.7 (2)	C17—C18—C19—C20	2.1 (3)
C2—C3—C4—C5	-2.8 (4)	C12-N2-C20-C19	-177.1 (2)
C3—C4—C5—C6	-175.9 (2)	C12-N2-C20-C15	1.6 (3)
C3—C4—C5—C10	3.2 (3)	C18—C19—C20—N2	177.0 (2)
C4—C5—C6—C7	178.6 (2)	C18—C19—C20—C15	-1.7 (3)
C10—C5—C6—C7	-0.6 (3)	C14—C15—C20—N2	-0.3 (3)
C5—C6—C7—C8	-0.8 (3)	C16—C15—C20—N2	-179.1 (2)
C6—C7—C8—C9	0.9 (4)	C14—C15—C20—C19	178.4 (2)
C7—C8—C9—C10	0.3 (3)	C16—C15—C20—C19	-0.4 (3)
C2—N1—C10—C9	173.6 (2)	C11—O3—C21—C22	97.2 (3)
Sn1—N1—C10—C9	-14.7 (3)	C11—O3—C21—C23	-140.7 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	<i>D</i> —H··· <i>A</i>
<u>N2—H2···O2</u>	0.88 (1)	1.95 (1)	2.819 (3)	169 (3)